Call for Papers  

Article Details


Research Article

MicroRNA-34c-5p Reduces Malignant Properties of Lung Cancer Cells through Regulation of TBL1XR1/Wnt/β-catenin Signaling

[ Vol. 24 , Issue. 1 ]

Author(s):

Weiqiang Lai, Yonghong Yue and Ganhua Zeng*   Pages 114 - 122 ( 9 )

Abstract:


Introduction: Lung cancer is common cancer with high mortality. A growing number of studies have focused on investigating the regulatory effects of microRNAs (miRs/miRNAs) during cancer progression. Nevertheless, the biological function of miR- 34c-5p in lung cancer and the underlying mechanism have not been determined. This study explored the effect of miR-34c-5p on the malignant behaviors of lung cancer cells.

Methods: In this study, we utilized diverse public databases to obtain differentially expressed miRNAs. Then, qRT-PCR and western blot were conducted to determine miR-34c-5p and transducin β-like 1 X-linked receptor 1 (TBL1XR1) expression. Next, H1299 and H460 cells were transfected with miR-34c-5p-mimic and pcDNA3.1- TBL1XR1. To examine the anticancer effects of miR-34c-5p, CCK-8, scratch, and Matrigel-Transwell assays were conducted to test cell viability, migration, and invasion, respectively. The StarBase database and dual-luciferase reporter gene assay were used to predict and verify the relationship between miR-34c-5p and TBL1XR1.

Results: Finally, Wnt/β-catenin signaling- and epithelial-mesenchymal transition (EMT)- related protein levels were detected using western blot. The results demonstrated that miR-34c-5p was poorly expressed in lung cancer cells, while TBL1XR1 was highly expressed. The findings also confirmed the direct interaction between miR-34c-5p and TBL1XR1. In H1299 and H460 cells, miR-34c-5p overexpression inhibited cell proliferation, migration, and invasion, Wnt/β-catenin signaling activity, and EMT, while TBL1XR1 upregulation reversed these effects of miR-34c-5p overexpression.

Conclusion: These findings illustrated that miR-34c-5p might repress the malignant behaviors of lung cancer cells via TBL1XR1, providing evidence for miR-34c-5p-based lung cancer therapy.

Keywords:

Lung cancer, microRNA-34c-5p, proliferation, migration, invasion, TBL1XR1.

Affiliation:



Read Full-Text article