Submit Manuscript  

Article Details


The Design and Application of Nanomaterials as Drug Carriers in Cancer Treatment

Author(s):

Jia Hou, Xiaoyan Sun, Ying Huang, Shaohua Yang, Junjie Liu, Changhao Feng, Jun Ma and Bin Chen*   Pages 1 - 23 ( 23 )

Abstract:


The development of new medical cancer treatment technologies is of great significance in reducing cancer mortality. Traditional clinical cancer therapy has a short drug action time, difficulty in accurately targeting tumour tissues and high levels of toxicity in normal tissues. With the development of nanotechnology, nanomaterials have been used as drug carriers to specifically target cancer cells and release drugs into the tumour environment. This technique has become an important research hotspot in cancer treatment. There are several advantages of using nanomaterials for cancer treatment that improve the efficacy of drug delivery, including increased drug concentrations in the targeted tumour area, reduced toxicity in normal tissues and controlled drug release. In this work, we describe the latest research development on the use of nanomaterials for drug delivery in cancer treatment and explore related mechanistic pathways. In addition, the methods used to control drug release into the targeted area using nanocarriers are reviewed in detail. Overall, we present current achievements using nanomaterials and nanotechnologies in cancer treatment, followed by current challenges and future prospects.

Keywords:

Cancer treatment, cancer cells and tissues, nanocarriers, Drug delivery, targeted therapy, drug release.

Affiliation:

Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715,, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715,, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715,, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715,, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715,, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715,, Key Laboratory of medical electrophysiology, Ministry of Education, Department of Cardiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000,, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715



Read Full-Text article